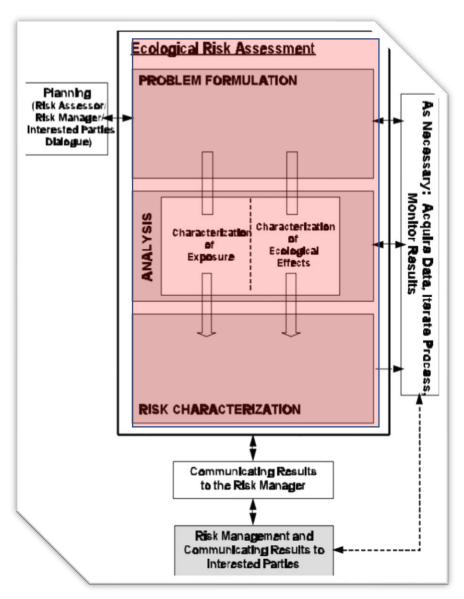


the European Union and the Republic of Turkey.

Case Studies on Ecological Risk Assessment


Robert Rachman

REPUBLIC OF TURKEY MINISTRY OF ENVIRONMEN AND URBANISATION

This Project is co-financed by the European Union and the Republic of Turkey.

Phases of ERA Process

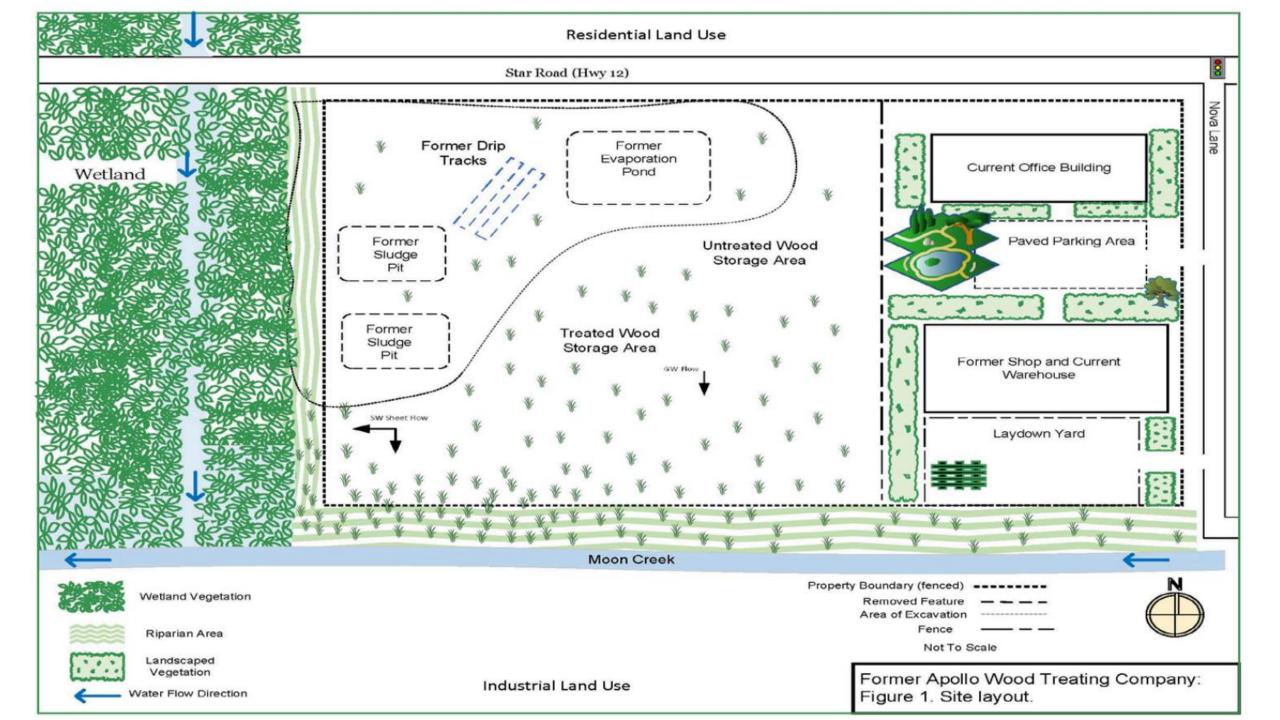
- 1. Planning
- 2. Problem Formulation
- 3. Analysis

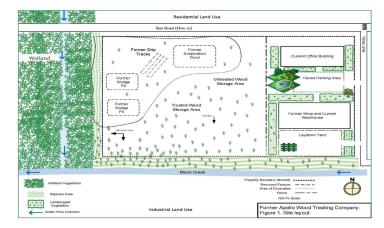
ERA

- 4. Risk characterization
- 5. Risk Management

Case Study for the Texas Commission On Environmental Quality (Case Study for the TCEQ's Ecological Risk Assessment Process, August 2018)

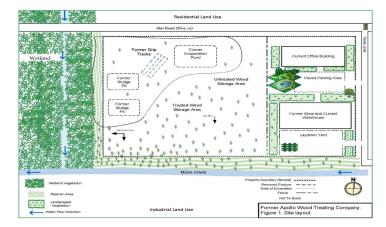
Site History


- From 1950 until 2004, the Apollo Wood Treating Company (AWTC) produced poles, foundation pilings, and lumber in a plant on a 60 750 m² site near Orion, Texas in Sunny County
- Wood was treated under pressure in a heated oil-based solution containing creosote, pentachlorophenol (PCP) and chromated copper arsenate (CCA).
- After treatment, the wood was removed and allowed to dry outside on drip tracks, resulting in large volumes of contaminated soil. On-site soil received drippings from treated wood and spills of woodtreating chemicals.
- Process wastewater (after separation of recoverable chemicals), was spread on-site or stored in an evaporation pond.
- Sludge gradually accumulated in the wastewater evaporation pond was dumped into unlined pits onsite.



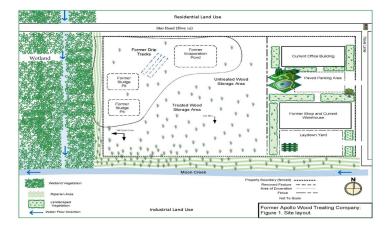
This Project is co-financed by the European Union and the Republic of Turkey.

Site Surroundings


- The site is adjacent to a large, permanently inundated wetland that receives surface runoff from north, water in the wetland flows south and enters Moon Creek.
- Moon Creek located south of the site is not a classified stream segment, but two miles downstream, it empties into Lake Jupiter, which is classified (not shown on the site layout).
- Based on depth of the shallow groundwater level 2.5 m below ground surface (bgs) and the depth of Moon Creek, impacted groundwater is believed to discharge to Moon Creek south of the site.
- Although surface water runoff from the site is primarily to the south, the proximity of the wetland (and its riparian area) to the former sludge pits made it susceptible to runoff from the site during significant rain events.
- East of the site are commercial facilities (office building, parking area, warehouse, laydown yard)

This Project is co-financed by the European Union and the Republic of Turkey.

Site Remediation in 2006


- All above-ground structures associated with wood treatment were demolished and removed.
- Any wastes remaining in the evaporation pond and sludge pits were removed and disposed of off-site.
- Soil was excavated from the former wood treating area and also the reparian zone west of the area (as it received overflows from the former sludge pits).
- Figure shows the outline of the 2006 excavation area and the former wood treating area.
- Today, the on-site area is not maintained, and the excavated riparian area has recovered to its former status and function. The on-site area is overgrown with grass, weeds, and shrubs. Birds, mammals, and reptiles have been observed on the affected property. They have also been observed on the off-site creek and wetland (and their riparian areas).

This Project is co-financed by the European Union and the Republic of Turkey.

Site Investigation in 2008

- Chemicals of concern (COCs) found on the site include metals, PCP, polycyclic aromatic hydrocarbons (PAHs), and dioxins/furans.
- In the unexcavated central part of the former facility, on-site surface and subsurface soils were contaminated, primarily where the treated wood was stored.
- The shallow groundwater (2.5 -3 m bgs) may be in contact with affected subsurface soils. COCs from the affected soils could move into the groundwater and then discharge into Moon Creek.
- Deeper groundwater has not been affected by historical operations at the site.
- Groundwater samples collected from a temporary well near the commercial facilities (east) did not indicate any contamination.
- Surface water and sediment samples collected from the creek and wetland indicated the presence of facility-related chemicals.

1. PLANNING

- 2. PROBLEM FORMULATION
- 3. ANALYSIS
- 4. **RISK CHARACTERIZATION**
- 5. RISK MANAGEMENT

This Project is co-financed by the European Union and the Republic of Turkey.

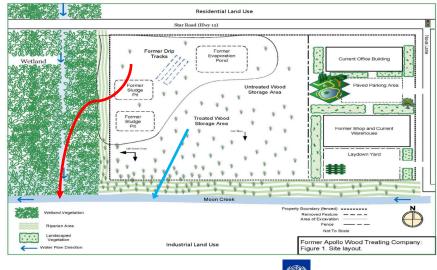
ERA Planning

- What is the nature of the problem?
- What are the ecological values of concern?
- What are the policy considerations (law, social, environmental, corporate policy etc.)
 - What are the management goals and decisions needed?

- What resources are available (personal, financial, ...)?
 - What are the ecosystem characteristics and ecological endpoints?
 - How likely is recovery of the ecosystem and how long will it take ?
 - How will risk assessment help?

• What is our state of knowledge of the problem?

• etc.


- 1. PLANNING
- 2. PROBLEM FORMULATION
- 3. ANALYSIS
- 4. **RISK CHARACTERIZATION**
- 5. RISK MANAGEMENT

This Project is co-financed by the European Union and the Republic of Turkey.

Ecological Setting and Screening Level Assessment

- Investigation data (2008) show that soil, sediment, groundwater and surface water contain or are suspected of containing organic or inorganic constituents.
- Moon Creek discharges to Lake Jupiter (3.2 km downstream, classified "high aquatic life use").
- A large freshwater wetland is located west of the former facility and it flows into Moon Creek.
- Multiple completed ecological exposure pathways are identified for this affected site: (i) Contaminated soil ⇒ Shallow groundwater ⇒ Moon Creek, (ii) Impacted surface water runoff ⇒ Wetland ⇒ Moon Creek.

- 1. PLANNING
- 2. PROBLEM FORMULATION
- 3. ANALYSIS
- 4. **RISK CHARACTERIZATION**
- 5. RISK MANAGEMENT

- None of the exposure pathways are planned to be removed by an immediate response action.
- As birds, mammals, and reptiles have been observed on-site, the site could serve as habitat, foraging area, or refuge to protected species.
- Birds, mammals, and reptiles have been observed on the affected property.
- Burrows of depth potentially reaching the contaminated subsurface were noted on-site.
- Additional evaluation is needed for the decision if the existing pollution by COCs must be reduced so that it does not pose an ecological risk, and (if so) to develop protective concentration levels (PCL for those COCs that do pose an unacceptable risk to selected ecological receptors).

- 1. PLANNING
- 2. PROBLEM FORMULATION
- 3. ANALYSIS
- 4. RISK CHARACTERIZATION
- 5. RISK MANAGEMENT

- Information summary
- Assessment endpoints
- Conceptual model
- Analysis plan

Problem Formulation

- Environmental setting: Site area and location, Site history (historical activities / operations, used COCs, present/future use), Surroundings (ecologically sensitive areas, potential pollution sources etc.), Potentially affected surface water bodies, Geology / hydrogeology, Contamination data, Earlier implemented and planned remediation measures etc.
- **Ecological resources:** Limited to urban terrestrial wildlife (e.g. American robin) and freshwater aquatic life in the stream. The wetland to the west of the site provides sufficient cover and forage for a variety of species, both terrestrial and aquatic. The former wood-treating and wood-storage areas are covered with grass, weeds, shrubs, and a few small trees.
- Benchmark screening of contamination data
- Assessment endpoints and Selection of biological systems for evaluation
- Conceptual model and Analysis plan

- 1. PLANNING
- 2. PROBLEM FORMULATION
- 3. ANALYSIS
- 4. **RISK CHARACTERIZATION**
- 5. RISK MANAGEMENT

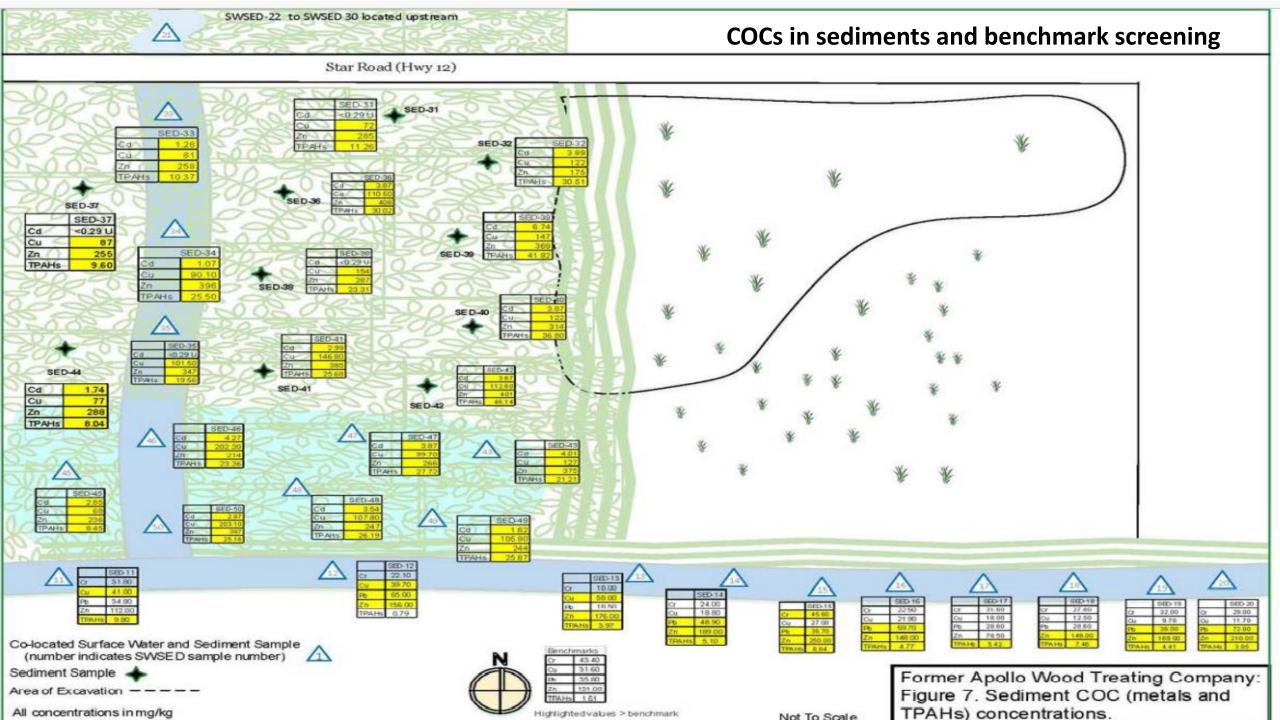
- Information summary
- Assessment endpoints
- Conceptual model
- Analysis plan

Benchmark Screening

- Contamination data: Sampling and chemical analysis
- Data evaluation: Benchmark screening (<u>https://www.tceq.texas.gov/remediation/eco</u>) ⇒ COC

Wetland sediment data summary and benchmark screening.

сос	General Area	Max Detect (mg/kg)	Data Flags	Detections	Sediment Freshwater Benchmark (mg/kg)	Benchmark Exceedance Count	Retain COC?
Arsenic	Upstream of Wetland	7.54		10/10	9.79	0	NA - upstream of wetland
Cadmium	Upstream of Wetland	0.63		4/10	0.99	0	NA - upstream of wetland
Chromium	Upstream of Wetland	40.8		10/10	43.4	0	NA - upstream of wetland
Copper	Upstream of Wetland	30.3		10/10	31.6	0	NA - upstream of wetland
Lead	Upstream of Wetland	30.8		10/10	35.8	0	NA - upstream of wetland
Zinc	Upstream of Wetland	109		10/10	121	0	NA - upstream of wetland
РСР	Upstream of Wetland	0.0039	U	0/10	1.2	0	NA - upstream of wetland
TPAHs	Upstream of Wetland	3.22		10/10	1.61	7	NA - upstream of wetland
TCDD TEQ (Avian)	Upstream of Wetland	9.0E-07		2/2	NA	NA	NA - upstream of wetland


...

- 1. PLANNING
- 2. PROBLEM FORMULATION
- 3. ANALYSIS
- 4. **RISK CHARACTERIZATION**
- 5. RISK MANAGEMENT

- Information summary
- Assessment endpoints
- Conceptual model
- Analysis plan

Assessment Endpoints

Assessment endpoints = "explicit expressions of the actual environmental value to be protected" (US EPA):

- Protection of wildlife, including protected species, with no unacceptable risk to species diversity and abundance (and viable reproduction) due to COCs in soils, sediment, and surface water
- Protection of the benthic invertebrate community, including protected species in Moon Creek and the wetland, with no unacceptable risk to species diversity due to site-related COCs.
- Protection of the aquatic life community in Moon Creek and the wetland, with no unacceptable risk to species diversity due to site-related COCs.

- 1. PLANNING
- 2. PROBLEM FORMULATION
- 3. ANALYSIS
- 4. RISK CHARACTERIZATION
- 5. RISK MANAGEMENT

- Information summary
- Assessment endpoints
- Conceptual model
- Analysis plan

Evaluated Biological Systems

- (i) Freshwater systems habitat (Moon Creek and the wetland area):
 - Herbivorous birds and mammals (e.g., red-winged blackbird and swamp rabbit)
 - Omnivorous birds and mammals (e.g., American wigeon and raccoon aquatic)
 - Carnivorous birds, mammals, and reptiles (e.g., kestrel, mink, and plain-bellied water snake)
 - For Moon Creek, all but eight of the aquatic species listed in the Freshwater Systems Habitat were evaluated (e.g. American alligator and bald eagle were not included as they require large fish as prey which are not present in Moon Creek).
 - For the wetland, all the species eliminated in the Moon Creek assessment were eliminated from the wetland for the same reasons. In addition, because the wetland did not provide water at a sufficient depth for foraging, the belted kingfisher was removed as a receptor.
- (ii) Minor habitat-terrestrial similar evaluation performed

Assoc. Species	Habita	at Name		Habitat ID		Description					
0	DESERT-A	RID		DESERT-ARID			dominantly semi-desert grassland k, juniper, and pinyon pine woodla	and arid shrubland, except for high nd. Example: Trans Pecos area.			
0	ESTUARIN	E SYSTEMS		ESTUARINE SYSTEMS		variety of plant and an levels, and seasonal te		pted to fluctuations in salinity, water i, ater marshes, sand flats, sandy sea			
0	FRESHWA	TER SYSTEMS		FRESHWATER SYSTEMS		bogs, and flood plains. amphibians are depen		rivers, creeks, swamps, marshes, stland habitat, and most species of wetlands) for reproductive success.			
AMERICAN ALLIGATOR	(<u>AQ</u>)	AMERICAN KESTREL (TR)	AMER	CAN MINK (AQ)	AMERICA	N ROBIN (TR)	AMERICAN WIGEON (AQ)	AMERICAN WOODCOCK (TR)			
BALD EAGLE (AQ)		BELTED KINGFISHER (AQ)	BLACK (AQ)	CROWNED NIGHT HERON BOBCAT		(<u>TB</u>)	CANADA GOOSE (AQ)	COMMON YELLOW THROAT (TR)			
COTTON MOUSE (TR)		COTTONMOUTH WATER MOCASSIN (AQ)	COYOT	TE_(TR) EASTE		COTTONTAIL (TR)	EASTERN LEAST TERN (AQ)	GREAT BLUE HERON (AQ)			
GREEN HERON (AQ)		INTERIOR LEAST TERN (AQ)	LEAST	SHREW (TR)	MALLARI	2 (AQ)	MARSH RICE RAT (AQ)	MARSH WREN (AQ)			
MUSKRAT (AQ)		NORTHERN HARRIER (TR)	OSPRE	EY (AQ) PL		LLIED WATER SNAKE	RACCOON SEMI-AQUATIC (AQ)	RED FOX (TR)			
RED WINGED BLACKBIR	<u>ID (AQ)</u>	SNAPPING TURTLE (AQ)	SNOW	GOOSE (AQ)	SNOWY EGRET (AQ)		SOUTHERN SHORT-TAILED SHREW (TR)	SPINY SOFT SHELL TURTLE (AQ)			
SPOTTED SANDPIPER (A	101	SWAMP RABBIT (AQ)	TIMBE	R RATTLESNAKE (TR)	VIRGINIA	A OPOSSUM (TR) WHITE FACED IBIS (AQ) WHOOPING CRANE (AQ)					
YELLOW CROWNED NIG HERON (AQ)	SHT	YELLOW MUD TURTLE (AQ)									
0	O MINOR			MINOR		Fragmented ecological habitat or isolated island-like areas that cannot easily be categorized among the seven major habitats (e.g., an unmaintained grassy area adjacent to a laydown yard or a small, man-made stock pond). Included species are representative of a variety of feeding guilds and are useful for generalized PCL analysis.					
0	MINOR HABITAT - AQUATIC					A subset of the MINOR habitat containing only aquatic organisms.					
0	MINOR H	ABITAT - TERRESTRIAL	and a second	MINOR TERRESTRIAL		A subset of the MINOR habitat containing only terrestrial organisms.					
and the state of t					and a start in the start of the	Native shortgrass prairie features blue grama, buffalograss, and fringed sage, and mixed					

- 1. PLANNING
- 2. PROBLEM FORMULATION
- 3. ANALYSIS
- 4. **RISK CHARACTERIZATION**
- 5. RISK MANAGEMENT

Protected Species

- Information summary
- Assessment endpoints
- Conceptual model
- Analysis plan

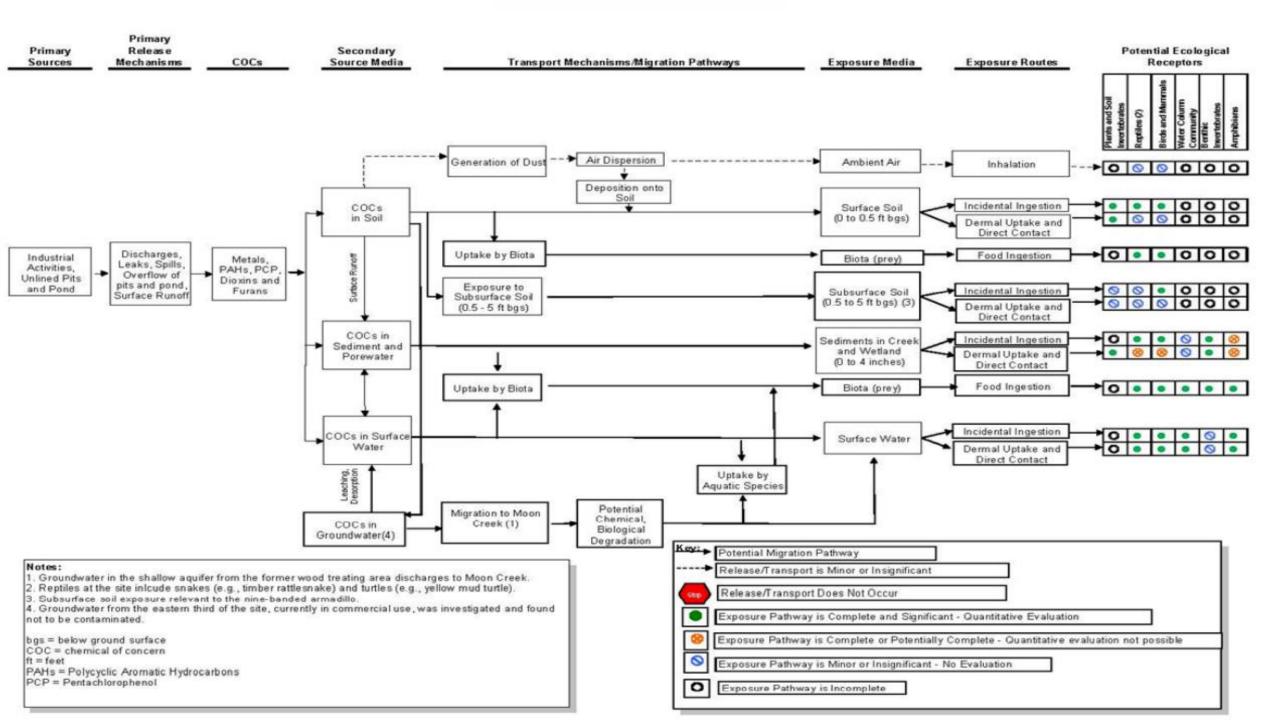
The federal and state-listed species for Sunny County are presented in the table below. The table presents the habitat requirements of the protected species and includes a determination of the potential presence of that species at the site. This evaluation concludes that the timber rattlesnake and white-faced ibis could be present at or around the site and therefore were included as potential receptors.

Species⁴	Species Category	Listing Status ⁵	Associated Habitat	Potentially on Affected Property?
American Peregrine falcon (<i>Falco</i> <i>peregrinus anatum</i>)	Bird	ST	Nests in tall cliff eyries; winters along coast and farther south; occupies wide range of habitats during migration including urban and lake shores.	No – site habitat does not correspond to species requirements
Bald Eagle (Haliaeetus leucocephalus)	Bird	ST	In Texas, preferred nesting habitat is along river systems, or within 1-2 miles of some other large water body. Fish is the primary food, but also prey on waterfowl, turtles, small mammals, and carrion (TPWD, 2018a).	No – Moon Creek does not represent a body of water of suitable size.
Interior Least Tern (Sterna antillarum athalassos)	Bird	FE, SE	Prefers open habitat and avoids thick vegetation and narrow beaches. Sand and gravel bars within a wide unobstructed river channel or open flats along lake shor	No – habitat does not correspond to species requirements
White-f:			Pref Environment and Climate Action Sector Operational Programme arshes, sloughs, and in Field	Yes – freshwater we <mark>UN</mark> nd and

- 1. PLANNING
- 2. PROBLEM FORMULATION
- 3. ANALYSIS
- 4. RISK CHARACTERIZATION
- 5. RISK MANAGEMENT

Conceptual Model

- Information summary
- Assessment endpoints
- Conceptual model
- Analysis plan


- Potential contaminant sources: (i) Primary (industrial wood treating activities and the unlined pits and ponds); (ii) Secondary (soil, sediment, surface water, and groundwater)
- Release mechanisms: Discharges, leaks, spills, overflow of the pits and pond, and surface runoff
- Transport pathways: (i) Physical (discharge from groundwater to surface water); (ii) Biological: uptake into biota consumed by other ecological receptors
- Exposure media: Ambient air, surface soil, subsurface soil, sediments in the creek and wetland, and surface water
- Exposure routes: Inhalation, ingestion, dermal contact, and ingestion of food
- Potential receptors: Terrestrial plant and soil invertebrate communities, reptiles, birds, mammals, water column community, benthic community, and amphibians

- 1. PLANNING
- 2. PROBLEM FORMULATION
- 3. ANALYSIS
- 4. RISK CHARACTERIZATION
- 5. RISK MANAGEMENT

Analysis Plan

- Information summary
- Assessment endpoints
- Conceptual model
- Analysis plan

The analysis plan is the final synthesis before the risk assessment proceeds - it:

- Summarizes what has been done during problem formulation
- Shows how the plan relates to management decisions that must be made
- Indicates (i) how data and analyses will be used to estimate risks and (ii) additional data needed for the analysis

When the problem is clearly defined and there are enough data to proceed, analysis begins.

- 1. PLANNING
- 2. **PROBLEM FORMULATION**
- 3. **ANALYSIS**

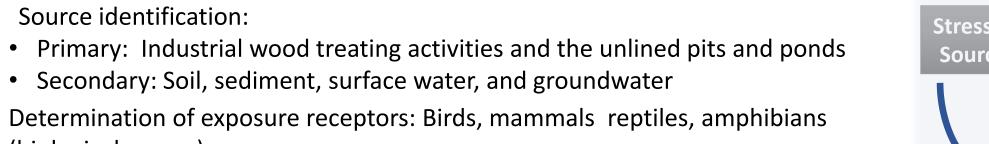
a)

b)

C)

٠

- **RISK CHARACTERIZATION** 4.
- 5. **RISK MANAGEMENT**


This Project is co-financed by the European Union and the Republic of Turkey.

Analysis of Exposure

Analysis of exposure

EXPOSURE:

Analysis of effects

Identification of habitats associated with exposure receptors: Freshwater and d) Minor Terrestrial systems

Characterization of stressors: COCs content in media (investigation data)

e) Representative receptors

(biological survey)

Source identification:

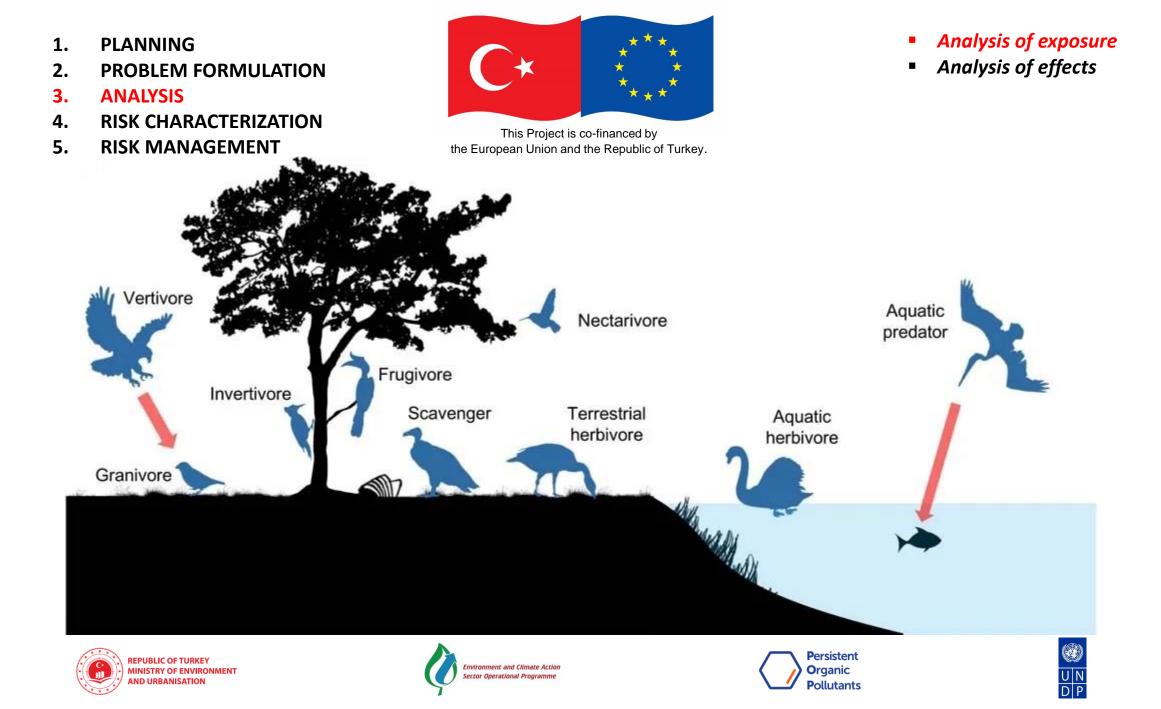
- Exposure pathway analysis f)
- Exposure profile (summary of the analysis) g)

- 1. PLANNING
- 2. PROBLEM FORMULATION
- 3. ANALYSIS
- 4. **RISK CHARACTERIZATION**
- 5. RISK MANAGEMENT

• Analysis of exposure

Analysis of effects

Representative Receptors


- Affected site contains several habitats and a variety of associated species ⇒ Huge scope of exposure analysis, missing exposure characterization data etc.
- Selection of several representative receptors for which exposure is analyzed
- Representative receptors must be selected for (i) all relevant habitats and (ii) for each feeding guild of individual habitats
 - » Feeding guild: Broad group of related ecological receptors (e.g. birds) that represent the variety of species potentially exposed to COCs at the affected property. Feeding guilds are based on a shared feeding strategy, similar potential for exposure, and physiological or taxonomic similarity.
- The species for which data exposure characterization data are available must be selected as representative receptors.

- 1. PLANNING
- 2. PROBLEM FORMULATION
- 3. ANALYSIS
- 4. **RISK CHARACTERIZATION**
- 5. RISK MANAGEMENT

• Analysis of exposure

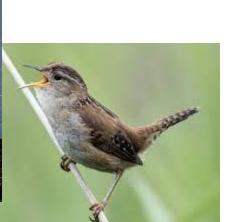
Analysis of effects

Representative Receptors - Database

Minor terrestrial habitat species for which exposure characterization parameters are published in the TCEQ database

	Assoc. Species	Habita	at Name		Habitat ID		Description				
	0	DESERT-AF	RID		DESERT-ARID	1171/2007/04/1		dominantly semi-desert grassland k, juniper, and pinyon pine woodl	d and arid shrubland, except for high and. Example: Trans Pecos area.		
	0	<u>ESTUARIN</u>	<u>E SYSTEMS</u>		ESTUARINE SYSTEMS		variety of plant and ar water levels, and seas	etlands are complex and highly pr imal species that are specially ad onal temperatures and can includ igrove swamps, and barrier island	e saltwater marshes, sand flats,		
	0	FRESHWATER SYSTEMS			FRESHWATER SYSTEMS		bogs, and flood plains amphibians are depen	Many protected species utilize w	g rivers, creeks, swamps, marshes, etland habitat, and most species of swetlands) for reproductive success.		
	0	MINOR			MINOR		Fragmented ecological habitat or isolated island-like areas that cannot easily be categorized among the seven major habitats (e.g., an unmaintained grassy area adjacent to a laydown yard or a small, man-made stock pond). Included species are representative of a variety of feeding guilds and are useful for generalized PCL analysis.				
	0	MINOR HA	ABITAT - AQUATIC		MINOR AQUATIC		A subset of the MINOR habitat containing only aquatic organisms.				
	0	MINOR HA	ABITAT - TERRESTRIAL		MINOR TERRESTRIAL		A subset of the MINOR habitat containing only terrestrial organisms.				
L	MERICAN ROBIN (TR) EAST SHREW (TR)	And the second			HITE QUAIL (TR) ANDED ARMADILLO (TR)	NORTHER	IOUSE (TR) DESERT SHREW. (TR) EASTERN COTTONTAIL (ERN CARDINAL (TR) RED FOX (TR) RED FOX (TR)				
Ŀ	ED-TAILED HAWK (TR)	D HAWK (TR) D HAWK (TR) TEXAS		TEXAS	<u>RAT SNAKE (TR)</u>	VIRGINIA	<u>OPOSSUM (TR)</u>	WHITE FOOTED MOUSE (TR)			
	SHORTGRASS PRAIRIE			SHORTGRASS PRAIRIE	02565276	Native shortgrass prairie features blue grama, buffalograss, and fringed sage, and mixed grass areas; also includes sandsage prairies and Shinnery sands areas. One of the most remarkable ecological features in this habitat is playas - ephemeral freshwater shallow circular-shaped wetlands, most more than 15 acres in size that are primarily filled by rainfall. Example: Texas High Plains.					

- 1. PLANNING
- 2. PROBLEM FORMULATION
- 3. ANALYSIS
- 4. **RISK CHARACTERIZATION**
- 5. RISK MANAGEMENT



- Analysis of exposure
- Analysis of effects

Representative Receptors

Selected Representative receptors for Moon Creek sediment:

	Receptor		Lead Avg-TRV PCL (mg/kg)	Zinc Avg-TRV PCL (mg/kg)	TPAHs Avg-TRV PCL (mg/kg)		
	EPC (mg/	kg):	53.29	191.7	6.93		
В	elted kingfisher		206.53	NA	NA		
Ν	Iarsh wren		183.80	361	20.80		
R	ed-winged blackbird		NA	918	26.89		
S	nowy egret		206.56	NA	NA		
S	potted sandpiper		108.88	325	20.04		
V	Vhite-faced ibis		41.39	135.38	NA		

- 1. PLANNING
- 2. PROBLEM FORMULATION
- 3. ANALYSIS
- 4. **RISK CHARACTERIZATION**
- 5. RISK MANAGEMENT

Analysis of exposure

Analysis of effects

Exposure Pathway

- Exposure: Contact between a stressor and a receptor
- Pathway mechanisms for chemical stressors:
 - » By air current
 - » In surface water (rivers, lakes, streams)
 - » Over soil surface and/or through soil
 - » Through groundwater
 - » Through the food web

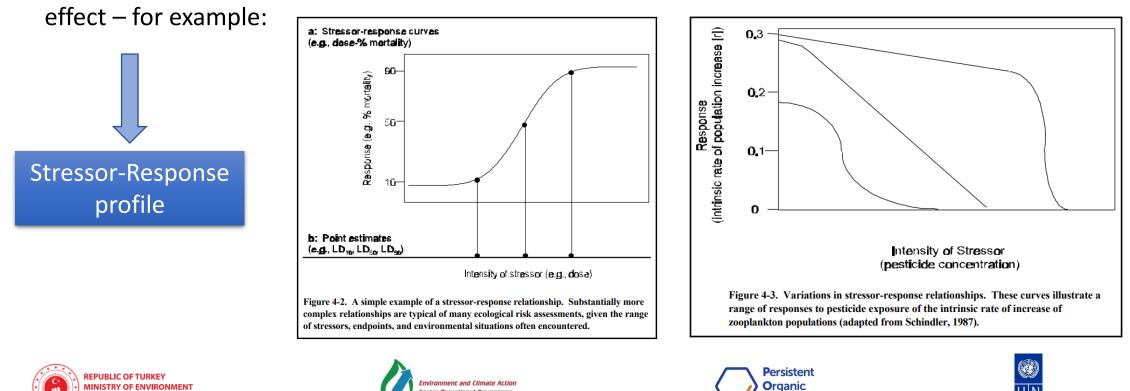
- PLANNING 1.
- 2. **PROBLEM FORMULATION**
- 3. **ANALYSIS**
- **RISK CHARACTERIZATION** 4.

MINISTRY OF ENVIRONMENT

AND URBANISATION

5. **RISK MANAGEMENT**

This Project is co-financed by the European Union and the Republic of Turkey.


- Analysis of exposure
- Analysis of effects

Stressor-Response Analysis and Profile

Pollutants

Stressor-Response analysis: Examines relationship between stressor level and ecological ullet

tor Operational Programm

- 1. PLANNING
- 2. PROBLEM FORMULATION
- 3. ANALYSIS
- 4. **RISK CHARACTERIZATION**
- 5. RISK MANAGEMENT

Analysis of Effects

- Analysis of exposure
- Analysis of effects

• If available, databases of parameters characterizing ecological risks for selected representative species can be used to characterize exposure pathways and exposure effects

									Protecti	U U	N I V	E R ast Updat	ed: null	Y	tor	Va No Ac	RW – Toxixity Ilue OAEL - No Ol dverse Effect OAEL - Lowes	oserved Level	
	User: Guest Role: Guest															Ac	dverse Effect	Level	
Habitat: Chemical: Log K _{ow} : swqb :	none POLYCYCLIC AF O See Toxicologic	OMATIC HYDR	ROCARBONS,	TOTAL(CAS: 130	498-29-2)		BAF - soil	to plant: to earthworm: to arthropod: to wildlife:						BAF - sedin BAF - sedin			0.197 tebrate: 2.32		
SI	pecies	Body Wt.	BAF	Food IR Wa	ter IR Soil Sed IR	End-Litera point NOA	ture Literature		Surrogate Used	Conservative PCL	TRV NOAEL	TRV LOAEL	Average A TRV PCL	UF EF Othe % % EM	er Refir F PC				
AMERICAN RO	OBIN (TR)	0.0773	2.92	0.242	0.13733 0.012584	GROW MORT REPR			STARLING STARLING	2.7807 27.807	2 20 -	20 200 -	15.294 152.94 1	00.] 100	100	0 0 0			

- 1. PLANNING
- 2. PROBLEM FORMULATION
- 3. ANALYSIS
- 4. **RISK CHARACTERIZATION**
- 5. RISK MANAGEMENT

This Project is co-financed by the European Union and the Republic of Turkey.

Risk Characterization

- Final phase of ecological risk assessment
- Protective concentration levels (PCL) development

PCL Calculator

Source: https://pcl.wtamu.edu/pcl/PCL_Calculat or.jsp

P	West Texas A&M UNIVERSITY Version: null Last Updated: null Protective Concentration Levels Calculator		TCEQ
User: Guest Role: Guest null PCL Calculator Chemicals Species Habitat Con	tact Us	Log Out	0
Step 1: Select desired habitat or select from the specie O Habitat O Species	es list. Step 2: Select either the chemical name or CAS. Chemical: 87-86-5 PENTACHLOROPHENOL		Step 3 Click "Next" to compute PCLs for Growth, Reproduction and Mortality
	P-CRESOL P-CRESOL PENTACHLOROPHENOL PERCHLORATE PERFLUOROBUTYRIC ACID (PFBA) PERFLUORODECANOIC ACID (PFDA) PERFLUORODECANOIC ACID (PFDA)	 8001-35-2 84-65-1 84-66-2 84-74-2 85-68-7 ¥7-86-5 	Next

- PLANNING 1.
- 2. **PROBLEM FORMULATION**
- 3. ANALYSIS
- **RISK CHARACTERIZATION** 4.
- 5. **RISK MANAGEMENT**

FATE AND TRANSPORT/TOXICOLOGICAL PROFILE FOR **PENTACHLOROPHENOL (PCP)**

Birds

CASRN: 87-86-5

Toxicity Reference Values

CASRN: 87-86-5

Environmental Fate and Transport (all

Sources

Pentachlorophenol's production and use in poles, cross arms, and fence posts, and oth may result in its release to the environment

Transport and Fate

TERRESTRIAL FATE: Results of an env pentachlorophenol partitions mainly in soil value of 4.70 (2), its adsorptivity will be s scheme (3), Koc values for the total disso loam soils, respectively, and 25,000 for th pentachlorophenol is expected to have low survey of 4 RCRA sites that contained wo indicated that all had some groundwater c

Chemical Form: PENTACHLOROPHENOL Surrogate: CHICKEN Effect Type: GROWTH Effect Measure: BODY WEIGHT NOAEL: 6.73 mg/kg-d LOAEL: 67.3 mg/kg-d Body Weight: 0.6584 kg (from study; Stedman et al. 1980) Food Ingestion Rate: 0.04434 kg/d (assumed: EPA 2007b) **Dosing Regime:** Ad libitum in diet; four dose levels (0, 1, 10, 100, and 1,000 mg/kg diet) on unmeasured concentrations Age of Test Animal: 1 d Life Stage and Sex: Juvenile / NR Exposure Duration: 1 w **Uncertainty Factors: N/A** Conversions: NOAEL: (100 mg PCP/kg food * 0.04434 kg/d) / 0.6584 kg BW = 6.73 mg/kg-d

LOAEL: (1,000 mg PCP/kg food * 0.04434 kg/d) / 0.6584 kg BW = 67.3 mg/kg-d End Point Reference: Stedman et al. (1980); EPA (2007b) Basis for Selection/Comments: EPA (2007b) Eco-SSLs contain 2 studies which report b NOAEL and LOAEL for avian growth. TRVs from Stedman et al. (1980) were chosen be

Mammals

CASRN: 87-86-5 **Chemical Form: PENTACHLOROPHENOL** Surrogate: RAT Effect Type: GROWTH Effect Measure: BODY WEIGHT CHANGES NOAEL: 4.95 mg/kg-d LOAEL: 27.7 mg/kg-d Body Weight: 0.5580 kg (from study; Kimbrough and Linder 1978) Food Ingestion Rate: 0.07168 kg/d (from study; Kimbrough and Linder 1978) Dosing Regime: Ad libitum in diet; three dose levels (0, 0.9, 5, and 28 mg/kg-d) Age of Test Animal: NR Life Stage and Sex: Juvenile / Males Exposure Duration: 220 d **Uncertainty Factors: N/A** Conversions: N/A End Point Reference: Kimbrough and Linder (1978); EPA (2007b) Basis for Selection/Comments: EPA (2007b) Appendix 6.1 contains 7 studies which report both a NOAEL and LOAEL for mammalian reproduction. The average of each NOAEL-LOAEL pair was calculated, and the median of these values was chosen. Note: conversions from concentration to dose were performed by EPA (2007b) and confirmed by WTAMU.

CASRN: 87-86-5 **Chemical Form: PENTACHLOROPHENOL** Surrogata PAT

NOAEL - No observed adverse effect level

LOAEL - Lowest observed adverse effect level

REPUBLIC OF TURKEY MINISTRY OF ENVIRONMENT

- 1. PLANNING
- 2. PROBLEM FORMULATION
- 3. ANALYSIS
- 4. **RISK CHARACTERIZATION**
- 5. RISK MANAGEMENT

This Project is co-financed by the European Union and the Republic of Turkey.

PCLs calculation

General equation form used to calculate protective concentration levels (PCLs) for wildlife receptors:

 $PCL_{soil/sediment} = \frac{TRV}{(BAF \ x \ FIR) + SSIR}$

- PCL_{soil/sediment} Protective concentration level for soil or sediment (mg/kg dry weight)
- TRV Toxicity reference value of the chemical (mg/kg-day)
- BAF Bioaccumulation factor
- FIR Food ingestion rate (kg/kg BW day)
- SSIR Soil or sediment ingestion rate (kg/kg BW day)

Inputs can be taken from the TCEQ database (<u>https://www.tceq.texas.gov/remediation/trrp/trrppcls.html</u>) or other sources.

- 1. PLANNING
- 2. PROBLEM FORMULATION
- 3. ANALYSIS
- 4. **RISK CHARACTERIZATION**
- 5. RISK MANAGEMENT

PCLs calculation

• In available databases, Conservative PCLs for individual species are presented

		A A A A A A A A A A A A A A A A A A A			West Texas A&M UNIVERSITY Version: null Last Updated: null											
									Protecti	ive Con	centra	ation	Levels (Calculato	or	
	User: Guest Role: Guest															
Habitat:	none						BAF - soil t	o plant:	2.22					BAF - sedimer	nt to fish:	0.197
Chemical:	POLYCYCLIC AR	OMATIC HYDR	OCARBONS, TOTA	L(CAS: 130498-29	-2)		BAF - soil to	o earthworm	3.62					BAF - sedimer	nt to benthic inv	vertebrate: 2.32
Log K _{ow} :	0							o arthropod:	0.887							
swqb :	See Toxicologic	al Profile					BAF - soil te	o wildlife:	0							
Sp	pecies	Body Wt.	BAF Foo	d IR Water IR	Soil Sed IR	End- point NOAE	Ire Literature L LOAEL	Literature LD 50	Surrogate Used	Conservative PCL	TRV NOAEL	TRV LOAEL	Average AU TRV PCL %	JF EF Other 6 % EMF	Refined PCL	
				Constant of the second		GROW			STARLING	2.7807	2	20	15.294		0	
AMERICAN RO	OBIN (TR)	0.0773	2.92	0.242 0.13733	0.012584	MORT			STARLING	27.807	20	200	152.94 10	0.) 100 100	0	
						REPR	Marking Street								0	

- 1. PLANNING
- 2. PROBLEM FORMULATION
- 3. ANALYSIS
- 4. **RISK CHARACTERIZATION**
- 5. RISK MANAGEMENT

This Project is co-financed by the European Union and the Republic of Turkey.

Exposure Point
Concentrations
(EPCs) for Wetland
sediment against
PCLs of wetland
sediment-based
receptors

Receptor	Cadmium PCL (mg/kg)	Copper PCL (mg/kg)	Zinc PCL (mg/kg)	PCP PCL (mg/kg)	TPAHs PCL (mg/kg)	TCDD TEQ (Avian) PCL (mg/kg)	TCDD TEQ (Mammal) PCL (mg/kg)
EPC (mg/kg):	3.34	131.6	335.1	0.62	27.95	3.5E-06	3.3E-06
American mink	47.37	168.56	12834	6.18	394.00	NA	3.6E-05
American wigeon	16.32	1868	459	14.27	11.22	3.8E-03	NA
Black-crowned night heron	18.44	468	304.44	4.57	17.48	6.1E-05	NA
Cottonmouth water moccasin	20.39	793	587	7.12	138.27	7.6E-05	NA
Green heron	45.61	1307	1108	10.43	69.28	1.4E-04	NA
Mallard	19.85	1053	387	10.50	12.64	2.5E-04	NA
Marsh rice rat	16.12	542	1858	3.03	36.08	NA	2.0E-05
Marsh wren	6.80	143.02	71.86	1.79	3.78	2.4E-05	NA
Muskrat	36.67	5216	9211	18.49	99.21	NA	3.4E-03
Plain-bellied water snake	20.72	686	914	4.93	97.02	6.5E-05	NA
Raccoon Semi-Aquatic	50.92	1303	5179	8.14	126.98	NA	4.6E-05
Red-winged blackbird	6.95	551	182.94	5.94	4.89	1.9E-03	NA
Snapping turtle	24.64	533	277.32	6.29	14.63	8.3E-05	NA
Snowy egret	14.00	462	594	3.43	64.01	4.6E-05	NA
Spiny softshell turtle	26.58	675	439	6.58	25.17	8.7E-05	NA
Spotted sandpiper	5.70	125.65	64.75	1.79	3.64	2.2E-05	NA
Swamp rabbit	29.64	3477	7175	15.89	84.27	NA	9.7E-04
Virginia opossum	40.07	1898	8459	29.00	190.62	NA	NA
White-faced ibis	11.91	262.73	135.38	3.75	7.62	4.7E-05	NA
Yellow-crowned night heron	53.22	1094	543	12.95	27.72	1.7E-04	NA
Yellow mud turtle	21.33	512	259.80	5.89	12.91	8.1E-05	NA

- 1. PLANNING
- 2. PROBLEM FORMULATION
- 3. ANALYSIS
- 4. **RISK CHARACTERIZATION**
- 5. RISK MANAGEMENT

This Project is co-financed by the European Union and the Republic of Turkey.

Exposure point
concentrations
for the
sediment
compared to
the default
benthic PCLs

Analyte	Area	EPC (mg/kg)	Sediment Benthic PCL (mg/kg)	Benthic Community COC?
Cadmium	Moon Creek	0.94	2.99	No - EPC < PCL
Chromium	Moon Creek	32.90	77.2	No - EPC < PCL
Copper	Moon Creek	34.94	90.3	No - EPC < PCL
Lead	Moon Creek	53.29	81.9	No - EPC < PCL
Zinc	Moon Creek	191.7	290	No - EPC < PCL
Pentachlorophenol	Moon Creek	0.56	1.2	No - EPC < PCL
TPAHs	Moon Creek	6.93	12.2	No - EPC < PCL
TCDD TEQ (Avian)	Moon Creek	2.1E-06	NA	See Uncertainty Analysis
TCDD TEQ (Mammal)	Moon Creek	2.2E-06	NA	See Uncertainty Analysis
Cadmium	Wetlands	3.34	2.98	Yes - EPC > PCL
Copper	Wetlands	131.60	90.3	Yes - EPC > PCL
Zinc	Wetlands	335.10	290	Yes - EPC > PCL
Pentachlorophenol	Wetlands	0.62	1.2	No - EPC < PCL
Total PAHs	Wetlands	27.95	12.2	Yes - EPC > PCL
TCDD TEQ (Avian)	Wetlands	3.5E-06	NA	See Uncertainty Analysis
TCDD TEQ (Mammal)	Wetlands	3.3E-06	NA	See Uncertainty Analysis

- 1. PLANNING
- 2. PROBLEM FORMULATION
- 3. ANALYSIS
- 4. **RISK CHARACTERIZATION**
- 5. RISK MANAGEMENT

Unacceptable Risk

Unacceptable risk to benthics and wildlife were identified only in wetland sediment:

Analyte	Sediment Wetland EPC (mg/kg)	Final Sediment PCL (mg/kg)	Receptors at Risk
Cadmium	3.34	2.99	Benthics
Copper	131.6	90.3	Benthics
Zinc	335.1	290	Benthics, spotted sandpiper
TPAHs	27.95	12.2	Benthics, spotted sandpiper, marsh wren, red-winged blackbird

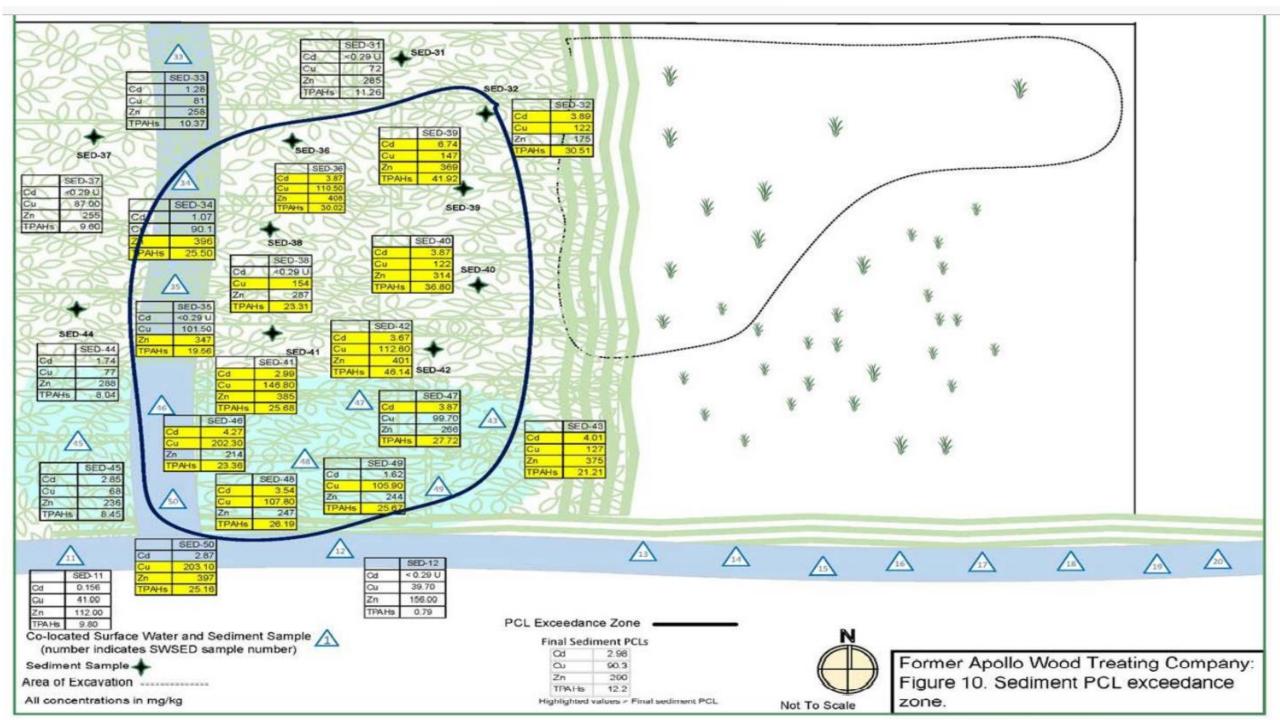
- 1. PLANNING
- 2. PROBLEM FORMULATION
- 3. ANALYSIS
- 4. **RISK CHARACTERIZATION**
- 5. RISK MANAGEMENT

Risk Management

Risk Management of Terrestrial Habitat

- Hot spot removal (excavation and backfilling with clean soil)
- Ecological PCLs are not required for surface soil
- Prior to hot spot removal, human health RA is recommended to determine soil PCLs for the site

Risk Management of Aquatic Habitat


- Unacceptable ecological risk in the wetland sediments are from: Cd, Cu, Zn and TPAHs
- Removal action within the wetland would severely impact many other wildlife receptors ⇒
 Conducting of remediation Feasibility study is recommended rather than excavation
- No unacceptable ecological risks are associated with contamination of the riparian areas, Moon Creek surface water/sediment and wetland surface water.

THANK YOU...

